Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.

نویسندگان

  • Lidan You
  • Sara Temiyasathit
  • Peling Lee
  • Chi Hyun Kim
  • Padmaja Tummala
  • Wei Yao
  • Wade Kingery
  • Amanda M Malone
  • Ronald Y Kwon
  • Christopher R Jacobs
چکیده

Bone has the ability to adjust its structure to meet its mechanical environment. The prevailing view of bone mechanobiology is that osteocytes are responsible for detecting and responding to mechanical loading and initiating the bone adaptation process. However, how osteocytes signal effector cells and initiate bone turnover is not well understood. Recent in vitro studies have shown that osteocytes support osteoclast formation and activation when co-cultured with osteoclast precursors. In this study, we examined the osteocytes' role in the mechanical regulation of osteoclast formation and activation. We demonstrated here that (1) mechanical stimulation of MLO-Y4 osteocyte-like cells decreases their osteoclastogenic-support potential when co-cultured with RAW264.7 monocyte osteoclast precursors; (2) soluble factors released by these mechanically stimulated MLO-Y4 cells inhibit osteoclastogenesis induced by ST2 bone marrow stromal cells or MLO-Y4 cells; and (3) soluble RANKL and OPG were released by MLO-Y4 cells, and the expressions of both were found to be mechanically regulated. Our data suggest that mechanical loading decreases the osteocyte's potential to induce osteoclast formation by direct cell-cell contact. However, it is not clear that osteocytes in vivo are able to form contacts with osteoclast precursors. Our data also demonstrate that mechanically stimulated osteocytes release soluble factors that can inhibit osteoclastogenesis induced by other supporting cells including bone marrow stromal cells. In summary, we conclude that osteocytes may function as mechanotransducers by regulating local osteoclastogenesis via soluble signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes.

Harold Frost first proposed the existence of several mechanical thresholds in bone, two of which determine whether bone is added to, or lost from, the skeleton. Recent evidence from bone biology helps elucidate the role of osteocytes in determining these mechanical thresholds. Specifically, when mechanical stimuli fall below the resorption threshold, osteocyte apoptosis occurs, followed by bone...

متن کامل

Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?

INTRODUCTION External mechanical forces on cells are known to influence cytoskeletal structure and thus cell shape. Mechanical loading in long bones is unidirectional along their long axes, whereas the calvariae are loaded at much lower amplitudes in different directions. We hypothesised that if osteocytes, the putative bone mechanosensors, can indeed sense matrix strains directly via their cyt...

متن کامل

Osteocyte Shape and Mechanical Loading

There is considerable variation in the shape of osteocyte lacunae, which is likely to influence the function of osteocytes as the professional mechanosensors of bone. In this review, we first discussed how mechanical loading could affect the shape of osteocyte lacunae. Recent studies show that osteocyte lacunae are aligned to collagen. Since collagen fiber orientation is affected by loading mod...

متن کامل

In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading.

Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca(2+)) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized...

متن کامل

Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone.

Bone is removed or replaced in defined locations by targeting osteoclasts and osteoblasts in response to its local history of mechanical loading. There is increasing evidence that osteocytes modulate this targeting by their apoptosis, which is associated with locally increased bone resorption. To investigate the role of osteocytes in the control of loading-related modeling or remodeling, we stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2008